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Abstract
In the modern Linux kernel, the scheduling algorithm
is responsible for deciding which process gets executed.
The current default scheduler in the Linux kernel, the
Completely Fair Scheduler (CFS), aims to maximize the
overall CPU utilization while also maximizing interactive
performance [2, 9]. In this project, we attempt to learn the
behaviour of CFS using recent machine learning techniques.
The intuition behind doing this is to evaluate the possibility
of building a generalized task scheduler for any kind of
workload. The important contributions of this project are:
1) Extracting and building a CFS scheduling dataset from
a running Linux kernel. 2) Training and evaluating a deep
learning model on this obtained dataset.

In this project, we also discuss the possibilities of integrat-
ing this model into the Linux kernel and the possible impli-
cations of doing so. Finally, we conclude the project with
conclusions and future work. The source code of the project
will be made available at the following link after the final sub-
mission: https://github.com/SampannaKahu/lkp_project.git

1 Introduction (Problem statement)

Currently, the process scheduling in the Linux kernel is
done by the CFS. However, CFS does not recognise each
process based on it’s previous execution history. Basically,
it’s objective is to best utilize processor time. However, the
Linux kernel does not take into account the past execution
history of the processes into account when scheduling a
process. It also tries to preempt a running process even it is
about to finish it’s execution which leads to multiple context
switches. However, if a scheduler could take into account the
execution history of a process and if it could also predict a
process is going to complete it’s execution on the processor,
it could let the process finish and then schedule the next
process. This could improve the overall performance of the
kernel since this could lead to lesser context switches.

The possibilities of this project are numerous. For example,
if the scheduler could predict the amount of time a process
is going to execute, it could make a well-informed decision
about whether to schedule a process at a certain time or not.
Further, the prediction of process execution could be extended
to any domain where scheduling is used. For example, in
Android, we know that opening some apps take significant
amount of time because the app’s data and resources need to
loaded into the memory. However, if the scheduler could pre-
dict this in advance, the necessary data could be pre-fetched
into the memory to ensure a better user experience when using
the device.

2 Background

This section talks about the background about the various
concepts and tools used in this project.

Almost all machines these days are multi-processor
machines. This means the multiple processors are executing
tasks parallely. This brings in the notion of hardware threads.
As explained in [10], hardware threads are capable of
handling a single process. This means that, the hardware
is controlling the threading. Completely Fair Scheduler
(CFS) decides which process will be executed next and the
execution of which process will be preempted. As mentioned
in the official documentation [2], CFS basically models an
"ideal, precise multi-tasking CPU" on real hardware. On real
hardware, only a single task can be run at any given instant.
Thus, it is necessary to introduce the concept of "Virtual
Runtime" which specifies when the next time-slice of a task
would start execution on an ideal multi-tasking CPU [2].

The CFS is triggered every-time the system-clock/timer
is triggered. A scheduling routine runs on each timer shot
and checks whether any new process needs to be scheduled.
This mechanism uses multiple data structures some of which
are task-struct, queue of waiting processes, the rb-tree which
signifies which task has spent how much amount of time on
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the CPU, and so on. However, this all happens internally
in the kernel and no concrete data is available to get better
visibility in this scheduling process. Thus, many profiling
tools have been built to collect these kind of data. One of such
tools is the perf-sched [5] tool. This tool uses the internal
kernel functions and collects metrics from the using kprobes
and kretprobes. Each version of the perf-sched tool is specific
to a certain kernel because the function signature of the
kernel change with each new version. The data returned by
this tool can be stored in .csv format and sued for further
downstream analysis.

NGinx [7] is a popular open-source software for high-
performance web-servers. It is also commonly used as
a proxy and sometimes as a load-balancer as well. It is
one of the fastest server architectures available openly and
constantly beats the performance of the Apache LAMP stack.
Because of its performance and popularity it is commonly
used in academic research papers as part of experiments [14].

Ab [8], also known as ApacheBench, is a popular tool
by Apache for simple bench-marking and load-testing of
http endpoints. This is a command-line tool and can send
numerous parallel requests to any given http endpoint. Due to
its easy setup, it is the logical choice to use it in experiments.

LSTMs are a popular tool for modelling time-series data,
or any general sequence of data. They were first proposed
by Hochreiter and Schmidhuber in 1997 in their famous pa-
per [12]. LSTMs use forget and remember gates for better
remembering both the long and short term instances of data
they encountered. Further, they are easier to train that a regu-
lar recurrent neural network because there is an easy/shorter
path for gradients to flow backwards between the LSTM cells.

3 Related work

In 2005, Negi. et. al, proposed a new method for predicting
the next process to be scheduled. They used machine learning
techniques to learn the CPU time-slice utilization behaviour
of known processes with the goal to minimize the TAT (turn
around time) of a process. After collecting the data, they
used decision trees to predict the next task to be scheduled.
However, our work differs from their because we use deep
learning techniques (LSTMs) to model the CPU time-slice
utilization behaviour instead of a decision tree. Although
LSTMs might be computationally heavier than decision trees,
the aim of our work is to evaluate their performance for this
particular application.

An interesting application of machine learning towards
Linux kernel was demonstrated by Sasha Levin and Julia
Lawall in 2018 [6]. They used machine learning to identify
patches that fix bugs from the ones that don’t. As input to

their machine learning model, they used the source code of
the patch. Then, based on the past history of which patches
were applied to the stable tree, they created the ground truth
labels and trained their machine learning model. As a result,
their model was able to classify patches with an accuracy of
more than 80%. However, this is not a direct application of
machine learning inside the running Linux kernel and hence
is different that our work here.

Some work on predicting schedulers was done by Shin et.
al. in 2012 [16]. As a part of this work, they predicted the
usage patterns of applications running on a mobile phone.
Their model predicted the usage of 9 candidate apps with an
accuracy of over 87%.

4 Motivation

As mentioned in the previous section, the model developed in
this project could be used to enhance the Linux scheduler.
For example, if the model could predict the amount of time it
is going to spend on the processor, the CFS scheduler could
take a better informed decision about when to schedule this
task. Further, if the model could predict how much more
time a process is going to spend on the scheduler, it could
preempt the process a little later or a little earlier depending
upon the requirement. This could save a lot of time spent
in context switching. This could speed up the Linux kernel
considerably.

Further, this type of model could be potentially applied
to other types of scheduling problems too. For example, in
case of the Android mobile operating system, a number of
applications can be installed and executed. However, it takes
considerable time for some applications to load it’s resources
in the memory and start executing. An analogy could be drawn
to the context switching between two processes which con-
sumes vital CPU resources. A model which could predict
the next task that is going to be executed could pre-load it’s
resources into the memory to save time and computation [11].

5 Methodology

5.1 Dataset generation:
For data generation, we used the perf tool available in
Linux. Via this tool, it is possible to get detailed metrics
around scheduling of the task. This tool needs to be run in
root(sudo) mode. This tool generates a perf.data file which
is a compressed version of all the collected data during the
session. This file can be opened using the tool itself.

Following command is used to record the task scheduler
metrics of the current kernel:
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Figure 1: High-level structure of Recurrent Neural Networks
[1].

Figure 2: Example of recording scheduler metrics using the
perf command. This example test was run for 50 seconds. A
total of 49.915 MB of data was collected which consisted of
422084 samples.

1 sudo perf sched record -- sleep 50

Listing 1: Command to record the scheduling data from the
current running kernel for a total of 50 seconds. The output
will be stored in a file in the same folder with the name
perf.data.

This command shown in Figure 2 will record the schedul-
ing metrics for all the cores and all the processes in the current
running kernel. As shown in the figure, a total of about 50
MB of data was collected in 50 seconds which consisted of
about 422084 samples. However, it is worth noting that the
amount of data collected depends the load of the system and
the number of processes being scheduled. For example, if
a lot of processes are getting scheduled on the system, the
number of samples in the collected profiler data using perf
will be higher.

Further, the data collected using the above command (Fig-
ure 2) can be visualized using the following command:

1 sudo perf sched map

Listing 2: Command to visualize the scheduling data recorded
using the record command. This command expects a file
named perf.data in the current directory.

The output of the above command can be seen in Figure 3.

Figure 3: Visualization of the ’perf sched’ command.

5.2 Experimental setup

5.2.1 Hardware parameters and operating system

As evident in Figure 3, the visualized data is for a multi-CPU
machine. That machine can support 12 threads in total. Each
CPU is executing a single process in parallel with the other
11 CPUs. However, in this project, predicting the scheduling
performance of multiple CPU will complicate things. Thus,
for this project, we will limit the scope to only a single CPU
machine.

To accommodate this constraint, we run our experiments
on a single CPU machine (i.e. a machine which supports
only a single hard-ware thread). We accomplish this using
a virtual machine which is configured to use only a single
CPU (i.e. a single hard-ware thread). We use Ubuntu 18.04
Bionic as the operating system running in the virtual machine.
This operating system is running the Linux Kernel 4.15.0-58-
generic. The host operating system is Ubuntu 18.04 Bionic
as well which is running the Linux Kernel 5.0.0-36-generic.
The host hardware is a Dell XPS 15 laptop with a total of
12 processors of type Intel(R) Core(TM) i7-8750H CPU @
2.20GHz.

5.2.2 Load generation

We tried to record the data on this virtual machine using
the command shown in Figure 2. However, the number of
samples in this recording were quite low. Also, we observed
that the CPU was idle for considerable amount of time. Upon
further investigation, we found out that this was happening
because the kernel was not under much load. In other words,
not many applications were running on the operating system.
This was causing the processor to sit idle intermittently. Thus,
to mitigate this issue, we induced artificial load on the kernel.

Taking inspiration from one of the experiments in [14], we
started the nginx server with the default settings. However,
simply starting the nginx server would not induce load on
kernel. However, we tackled this by keeping the nginx server
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busy. Since nginx is an http web server, it will become busy
if it is serving requests. Thus, it will be sufficient to keep
sending requests to the nginx server to keep it busy.

Sending http requests to nginx was achieved by a tool called
ab. This is the acronym for Apache Bench. This tool comes as
a part of the the apache2-utils package. It sends dummy http
requests to a given IP address. It stops sending requests when
it has finished sending the configured number of requests. We
configure this tool to send http requests to nginx which is
running on the same virtual machine. As a result, both nginx
and ab will generate load for the processor. We start this tool
using the following command:

1 ab -n 1000000 -c 5 http ://10.0.2.15/

Listing 3: Command to send one million requests to the given
IP address using ab (Apache Bench).

With the given configuration of hardware (single processor
i7 virtual machine), it takes more than 100 seconds for these 1
million http requests to complete. Thus, we record the sched-
uler profiler data using the command mentioned in Figure 2
during this time-frame.

5.2.3 Data pre-processing

The data collected by the the perf tool is not suitable to be
given as an input to the machine learning model. In it’s raw
format, it encodes the task names into alpha-numeric format
based on occurrence (see Figure 3). Thus, we need to convert
these alphanumeric code into their real task names. To do
so, we write a simple python script to read the mapping
between each alphanumeric code with it’s corresponding task
name and replace those codes with their real task names. The
initial statistics of the collected dataset can be seen in Figure 4.

Further, these task names are categorical data. They are
currently stored in string format because they are names. We
convert them into vectors by applying one-hot encoding on
these names. In the dataset that we collected, we found a total
of 28 task names during the entire recording process. Thus,
the dimension-size of these one-hot vectors would be 28 after
applying the one-hot encoding.

The data recorded by perf also contains the time-stamp at
which a process was scheduled. The significant/meaning of
the absolute value of this time-stamp is not clear. However,
all we are interested for the scope of this project is the time
duration between two consecutive schedules of processes.
This data can be easily obtained from the time-stamps by
differentiating them. In essence, we take the differences of
consecutive time-stamps to differentiate them. We drop the
last record. Further, we scale and shift this data to get zero

Figure 4: The number of schedules of a given process. This
was captured when ’ab’ was generating load on ’nginx’ by
sending a total of 1 million http requests.

mean and unit variance.

One unexpected issue encountered during the pre-
processing of the data was that one of the differentiated time
values was abnormally higher than the others. Its value was
more than one complete second. This meant that the corre-
sponding process took more than 1 second to be scheduled,
execute its time-slice and get preempted. However, that time
duration is unusually high for any process in the kernel. Hence,
we got rid of that entry from the dataset assuming that it was
a one-off issue.

5.3 Model:

The collected dataset is a series of readings collected
over time. Which means that this is a time-series dataset.
According to the latest research in the field, Deep Learning
models are the best fit of handling large amounts of data.
Specifically, the Long-Short-Term memory (LSTMs) [12, 13]
(a type of Recurrent Neural Networks (RNNs) [15] See figure
1) are best suited to handle time-series data.
We train an LSTM model using this data to predict the
next task that is going to be scheduled or preempted. It is
important to note that the model is trained on the difference
of the consecutive time intervals between two schedules.
In other words, we record the time intervals between two
consecutive schedules and differentiate them. Further, we
select sequences of appropriate length for training the model.
The model is trained until the test loss reasonably stabilizes.
Further, we use the LGFBS optimizer for 30 epochs or until
the loss converges. See figure 5 for the computational graph
of our LSTM model generated using PyTorchViz [17].
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Figure 5: The computational graph of our model.

6 Results

We computed and recorded the test loss for each epoch
during the training process. Figure 6 shows the test loss as the
training process progresses. From this figure, we can observe
that initially the test loss was about 0.0325. However, as the
training progresses, the loss started to reduce and stabilized
after 30 epochs. Beyond this point, training further won’t
lead to the further decrease in the loss and would simply lead
to over-fitting. For our evaluations, we use the model saved at
30 epochs because it has the least test loss.

After the training process was complete, we provide
sample input sequences to the trained model. We make the
model generate predictions after the sample input sequence is
over. In other words, once the model sees the entire sample
input sequence, we run the model further for 1000 steps to
make it predict the next schedules. Also, to get a better idea
of how the model learns to predict the sequences, we make
the model generate predictions after each epoch.

Figure 7 shows the prediction of the model for a sample
input sequence after the model was trained for 1 epoch. The
values in this figure before the 1200 mark on the x-axis
represent the sample input sequence. The value after that
represent the values predicted by the model. It is important
to note that the model was trained on the difference of the
consecutive time intervals between two schedules. In other
words, we recorded the time intervals between two consecu-
tive schedules and differentiated them. We can see that the
model does not predict anything in figure 7. It is just a flat line.

Figure 8 shows the predictions of the model for the same
sample input after 3 epochs of training. W can observe that
the model is trying to match the magnitude of the training
sequences.

Figure 6: Plot of test loss vs. the epochs.

Figure 7: Prediction of the model after training the model for
1 epoch.

Further, in figure 9, the model is trained for 5 epochs. The
predictions of the magnitudes is good enough. However, we
can see that the model has some bias in the predictions. After
a few more epochs, the model looses that bias and now the
predictions look much better in figure 10.

Finally, in figure 11, the model is now trained for 30 epochs.
The magnitude of the predictions match very closely with the
magnitudes of the input sequence. Further, we can observe
that even the patterns of values in the predicted sequence
resembles the pattern in the input sequence. This indicates
that model has now been trained well which is also confirmed
by stabilized test loss in figure 6.

7 Discussion

From figures 7, 8, 9, 10, 11, we can see the progression of
the predictions of the model as it is trained. Initially, the
model was not predicting anything at all. It was simply using
predicting a flat line. Further, as the training progressed,
we can observe that the model slowly starts to acquire
characteristics of the training data. For example, first, it starts
to model the magnitude of the input sequences. Then, it starts
to model the patterns in the input sequences. After a certain
amount of training, it becomes difficult for even a human to
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Figure 8: Prediction of the model after training the model for
3 epochs.

Figure 9: Prediction of the model after training the model for
5 epochs.

Figure 10: Prediction of the model after training the model
for 15 epochs.

Figure 11: Prediction of the model after training the model
for 30 epochs.

distinguish between the sequences predicted by the model
and the input sequence.

This capability of our model to predict the future of the
scheduled tasks makes it valuable. At any given time, of the
Linux kernel knows the next N tasks to be scheduled, it can
take better decisions while scheduling them. For example,
it could be possible to club two relatively small CPU time
slices allotted for a given process into a a bigger slice. This
would help reduce the number of context switches between
tasks thereby improving performance.

To practically integrate our work into the Linux kernel, the
biggest challenge is to deal with the predictions latencies of
the model. Deep learning models are orders of magnitude
slow when compared to the latencies of the scheduler. Since
the scheduler runs at each context switch, it becomes crucial
to bring down the latencies of the deep learning model if it
ever has to replace the traditional scheduler.

Many ways have been explored till now to improve the
predictions latencies of deep learning models. One of the
prominent solutions is to use a better language, like C++. This
approach is often used in autonomous cars where prediction
latencies are important too. Another approach to dedicated
hardware for running the predictions of the model (e.g. GPU,
TPU, ASIC, etc). GPUs already provide a huge improvement
over pure-cpu prediction latencies. Further, Google’s TPUs
[3] are more specialized for deep learning. Finally, ASICs can
theoretically bring down the prediction latencies by orders of
magnitude and seem to be an interesting avenue to explore [4].

8 Development status

8.0.1 Completed tasks

• Literature survey, background and related work is com-
plete.

• The experimental setup for data collection and genera-
tion have been figured out.

• The actual data collection and it’s processing scripts are
complete.

• Building, implementing and training the LSTM model
on the collected dataset.

• Exploring/discussion the possibilities of integrating this
the Linux kernel along with its implications.

9 Conclusion

In this project, we introduced the problem of predicting the
scheduling of processes in the Linux kernel. Further, we dis-
cussed our motivation to develop a solution to predict the
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scheduling behaviour of Linux kernel and the benefits it will
provide. We then discussed in detail our methodology to im-
plement our proposed solution. This includes the process of
generating the data, the experimental setup, and the details of
training the deep learning model. Finally, we show our results,
discuss them in detail and conclude.

10 Future work

To improve this further, we could use a more versatile dataset.
In other words, we used only Apache Bench and NGinx to
generate the load on the kernel. However, in the future, we
could use a more versatile and natural data for training (for
example, the scheduling data of a public server).

References

[1] A Beginner’s Guide to LSTMs and Recurrent Neural
Networks. http://skymind.ai/wiki/lstm.

[2] CFS Scheduler — The Linux Kernel documenta-
tion. https://www.kernel.org/doc/html/latest/
scheduler/sched-design-CFS.html.

[3] Cloud TPU. https://cloud.google.com/tpu/.

[4] Deep Learning on ASIC. https://www.easics.com/
products/deep-learning-asic.

[5] Linux Performance. http://www.brendangregg.
com/linuxperf.html.

[6] Machine learning and stable kernels [LWN.net]. https:
//lwn.net/Articles/764647/.

[7] What is NGINX? https://www.nginx.com/
resources/glossary/nginx.

[8] ApacheBench. https://en.wikipedia.org/
w/index.php?title=ApacheBench&oldid=
920436197, October 2019. Page Version ID:
920436197.

[9] Completely Fair Scheduler. https://en.wikipedia.
org/w/index.php?title=Completely_Fair_

Scheduler&oldid=918940983, October 2019. Page
Version ID: 918940983.

[10] Multithreading (computer architecture). https:
//en.wikipedia.org/w/index.php?title=
Multithreading_(computer_architecture)
&oldid=895110143, May 2019. Page Version ID:
895110143.

[11] Ricardo Baeza-Yates, Di Jiang, Fabrizio Silvestri, and
Beverly Harrison. Predicting the next app that you are
going to use. pages 285–294, 02 2015.

[12] Felix A Gers, Jürgen Schmidhuber, and Fred Cum-
mins. Learning to forget: Continual prediction with
lstm. 1999.

[13] Sepp Hochreiter and Jürgen Schmidhuber. Long short-
term memory. Neural computation, 9(8):1735–1780,
1997.

[14] James Litton, Anjo Vahldiek-Oberwagner, Eslam El-
nikety, Deepak Garg, Bobby Bhattacharjee, and Peter
Druschel. Light-weight contexts: An {OS} abstraction
for safety and performance. In 12th {USENIX} Sympo-
sium on Operating Systems Design and Implementation
({OSDI} 16), pages 49–64, 2016.

[15] Tomáš Mikolov, Martin Karafiát, Lukáš Burget, Jan Čer-
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